

# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

# T1000(E)(M28)T

## NATIONAL CERTIFICATE

# **MATHEMATICS N2**

# (16030192)

### 28 March 2019 (X-Paper) 09:00–12:00

#### **REQUIREMENTS: 1** sheet of graph paper (BOE 8/9)

A scientific calculator may be used.

This question paper consists of 6 pages and a formula sheet of 2 pages.

# DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

#### NATIONAL CERTIFICATE MATHEMATICS N2 TIME: 3 HOURS MARKS: 100

#### **INSTRUCTIONS AND INFORMATION**

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show ALL intermediate steps and simplify where possible.
- 5. Final answers must be rounded off to THREE decimal places where applicable unless otherwise stated.
- 6. Questions may be answered in any order, but subsections of questions must be kept together.
- 7. Use only BLUE or BLACK ink.
- 8. Sketches must be large, neat and fully labelled.
- 9. ALL graph work must be done on the graph paper provided. Write your EXAMINATION NUMBER on every sheet of graph paper that you use.
- 10. Write neatly and legibly.

-2-

#### **QUESTION 1**

1.1 Simplify the following WITHOUT the use of a calculator:

| 1.1.1 | $(x^6)^2(x^3y)^4(xy^0)^{-3}$ |           |     |
|-------|------------------------------|-----------|-----|
|       | $\left(x^2 y^2\right)^3 x y$ | <b>\$</b> | (3) |

1.1.2 
$$\left[ \left( \log_4 64 \right)^2 + \left( \log_7 \frac{1}{49} \right)^3 \right]^{-1}$$
(3)

1.1.3 
$$\log_4 5 + \log_4 \frac{1}{10} - \log_2 4$$
 (4)

#### 1.2 Solve for x if:

$$10\left(\frac{1}{32}\right)^{2+3x} = 640$$
(4)

1.3 Given:

 $A = \pi r \sqrt{h^2 + r^2}$ 1.3.1 Make 'h' the subject of the formula
(3)
1.3.2 Calculate the value of 'h' if r = 2 and A = 150(2)
[19]

#### **QUESTION 2**

2.1 Fully factorise the following expressions:

2.1.1 
$$12x^2 - 18x + 6$$
 (3)

2.1.2 
$$16x^{36} - 1$$
 (3)

2.1.3  $x^2 + ab - ax - bx$  (3)

2.2 Given:

$$(x-3)(x+2)$$

$$(x+2)(x-1)^{2}$$

$$(x-3)(x-1)$$
2.2.1 Determine the Lowest Common Multiple (LCM) (3)

| 2.2.2 | Determine the Highest Common Factor (HCF) | (1) |
|-------|-------------------------------------------|-----|

2.3 Simplify the following expressions:

| 2.3.1 | 9                        | <i>x</i>           | <b>*</b> |     |
|-------|--------------------------|--------------------|----------|-----|
|       | $\overline{3x^2 - 3y^2}$ | $\frac{1}{xy-x^2}$ | ¥.       | (5) |

2.3.2 
$$\frac{1 - \frac{1}{x - 1}}{\frac{1}{x^2 - 1}}$$
(4)

#### **QUESTION 3**

3.1 Determine the value(s) x in the following equation by means of factorisation

 $(x-2)(x+3) = 6 \tag{3}$ 

3.2 The sum of two integers is 41. When three times the smaller integer is subtracted from the larger integer, then the result is 17.

Find the TWO integers. (4)

#### 3.3 A wheel with a diameter of 600 mm has a rotational frequency of 200 r/min.

Calculate the following:

|   | 3.3.1     | The rotational frequency in r/s | (1) |
|---|-----------|---------------------------------|-----|
| 轝 | 3.3.2     | The peripheral velocity in m/s  | (3) |
|   | 3.3.3     | The angular velocity in rad/s   | (2) |
|   | Convert 6 | 0°30′36″ to radians             | (2) |

3.4

Determine the cost involved to treat the plate on one side against rust at a price of *R*55,00 per square meter (4) 專

3.6 A lead sphere with a diameter of 15cm is melted and recast into multiple smaller spheres. All the smaller spheres have a radius of 20mm

Determine

| 3.6.1 | The volume of one smaller sphere in $mm^3$ | (2) |
|-------|--------------------------------------------|-----|
| 3.6.2 | The amount of smaller spheres created      | (4) |

#### **QUESTION 4**

| 4.1 | A college yard is divided into parallel strips at 6 m intervals and the lengths of the strips are 5 m, 9 m, 14 m, 19 m, 24 m, 30 m, 22 m, 15 m, 10 m and 5 m. |                                                                                                           |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------|
|     | Calculate                                                                                                                                                     | the area of the college yard.                                                                             | (3)  |
| 4.2 | Determine                                                                                                                                                     | the value of $\theta$ in radians if:                                                                      |      |
|     | $\cot \theta = -0$                                                                                                                                            | and $270^\circ \le \theta \le 360^\circ$                                                                  | (4)  |
| 4.3 | Mr Mphatelevation t                                                                                                                                           | nya is standing 20 m away from a tree and he measures the angle of to the top of the tree as $38^{\circ}$ |      |
|     | Determine                                                                                                                                                     | the height of the tree (Ignore the height of Mr Mphanya)                                                  | (3)  |
| 4.4 | Draw the if $0^\circ \le x \le x$                                                                                                                             | graphs of $f(x) = \cos x + 1$ and $g(x) = \sin x + 1$ on the same system of axes $\leq 360^{\circ}$       | (6)  |
|     | Use the gr                                                                                                                                                    | aphs drawn to determine the $x$ -values where:                                                            |      |
|     | 4.4.1                                                                                                                                                         | f(x) = g(x)                                                                                               | (2)  |
|     | 4.4.2                                                                                                                                                         | $\cos x + 1 = 0$                                                                                          | (1)  |
|     | 4.4.3                                                                                                                                                         | $\sin x + 1 = 2$                                                                                          | (1)  |
|     | 4.4.4                                                                                                                                                         | $\cos x + 1 = 2$                                                                                          | (2)  |
|     |                                                                                                                                                               | <b>4</b>                                                                                                  | [22] |

[22]

[25]

#### **QUESTION 5**

Below are the graphs of  $f(x) = (x-3)^2 - 4$  and the straight line g(x)

- A and B are the x-intercepts of f(x)
- C is the turning point of f(x)
- D is the y-intercept of both f(x) and g(x)



Determine the following:

|     |                                                | [12] |
|-----|------------------------------------------------|------|
| 5.5 | The equation of the line $g(x)$                | (2)  |
| 5.4 | The co-ordinates of point C                    | (2)  |
| 5.3 | The equation of the axis of symmetry of $f(x)$ | (2)  |
| 5.2 | The co-ordinates of point D                    | (2)  |
| 5.1 | The co-ordinates of points A and B             | (4)  |

**TOTAL: 100** 

#### FORMULA SHEET

Any applicable formulae not found on this formula sheet may also be used

#### **Right cone**

Volume =  $\frac{1}{3}\pi r^2 h$ Surface area =  $\pi r \sqrt{h^2 + r^2} + \pi r^2$ =  $\pi r l + \pi r^2$ 

#### Cylinder

Volume =  $\pi r^2 h$ Surface area =  $2\pi r^2 + 2\pi r h$ 

#### Sphere

Volume =  $\frac{4}{3}\pi r^3$ Area =  $4\pi r^2$ 

#### Right pyramid

Volume =  $\frac{1}{3}$  (area of base) × (perpendicular height)

#### Prism

Volume = (area of base)×(perpendicular height)

# **Degrees and radians** $180^\circ = \pi$ rad

$$\theta = \frac{\operatorname{arc}}{\operatorname{radius}}; A = \frac{1}{2}r^2\theta$$

#### Angular velocity and circumferential velocity

Angular velocity:  $\omega = 2\pi n$ 

Circumferential velocity:  $v = \pi D n$ 

n = rotation frequency (r/s = revolution per second)

| Midordinate rule                                                                                                                              |                        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| Area = (distance between ordinates) $\times$ (sum of other midordinates)                                                                      |                        |  |  |
| Area = $\left[\frac{\text{(First ordinate + Last ordinate)}}{2} + \text{Sum of all other ordinates}\right] \times \text{The distance be}$     | etween the ordinates   |  |  |
|                                                                                                                                               |                        |  |  |
| Graphs                                                                                                                                        |                        |  |  |
| Straight line: $y = mx + c$                                                                                                                   |                        |  |  |
| Parabola: $y = ax^2 + bx + c$                                                                                                                 |                        |  |  |
| Axis of symmetry: $x = \frac{-b}{2a}$                                                                                                         |                        |  |  |
| Roots: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$                                                                                               |                        |  |  |
|                                                                                                                                               |                        |  |  |
| $90^{\circ} < \theta < 180^{\circ}$                                                                                                           |                        |  |  |
| $\sin \theta = \sin(180^\circ - \theta)$ $\cos \theta = -\cos(180^\circ - \theta)$ $\tan \theta = -\tan^2 \theta$                             | $(180^\circ - \theta)$ |  |  |
| Segment of circles                                                                                                                            |                        |  |  |
| Chord length = $x$ Height of the segment = $h$ Diameter of $a$                                                                                | circle = $D$           |  |  |
| $D = h + \frac{x^2}{4h}$                                                                                                                      |                        |  |  |
| Regular polygons         Angle subtended at centre of circumscribed circle by one side: $\theta = \frac{360^{\circ}}{\text{number of sides}}$ |                        |  |  |
| R = radius of circumscribed by circle<br>x = length of the side<br>$x = 2R \sin\left(\frac{\theta}{2}\right)$                                 |                        |  |  |

-2-

Annulus:  $A = \pi (R^2 - r^2)$